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Abstract

He studv general, non~Hamiltonian perturbations of integrable svstems with
two degrees of freedom. The approach is to consider asvmptotic behavior of
solutions near a resonant manifold, parameterized by the energy. We use
action-angle variables. and averaging on a fast and an intermediate time scale,
along with both canonical and non-canonical transformations of variables.

A suitable generalization of the Poincare-Birkhoff theorem is proved,
namely the existence of pairs of quasi-preserved periodic solutions, alternat-
ingly of elliptic and hyperbolic type. These solutions appear as points on a
reduced representation of the resonant manifold, coordinatized by energy and a
slow phase. Near hyperbolic points, there exist open escape sets of initial
data on the resonant manifold which lead to solutions leaving in finite time a
given, perturbation-independent neighborhood of the manifold. Near elliptic
points, we prove the existence of invariant manifolds of solutions, asymptoti-
cally stable in the large, of three types: 1limit cycles, two-dimensional tori
and three-dimensional tori. Applications to the presence of resonances in the

solar system are discussed.




1. Introduction

The motivation for this work is the studv of long periods in the solar
svstem (Arnold, 1978; Moser, 1978), on the one hand. and of slow motions of
localized, coherent vortex structures in the atmosphere and ocean (Malanotte
Rizzoli. 1982), on the other. In both cases, the main forces acting are
conservative and the classical approach in either case has been the investiga-
tion of purely Hamiltonian perturbations of a completely integrable system.

Such a system of 2n pairwise conjugate variables is characterized by a
Hamiltonian Ho which depends on the other n-1 integrals of the system, and is

most conveniently represented in terms of action variables.

o 0
H =H(J J)
1+---s n
An arbitary conservative perturbation of this system preserves only the
energy, but not the other integrals of motion. Thus the perturbed system is

characterized by the Hamiltonian

H = Ho + € Hi(J veeey J .0 Lo, 8,
1 n 1 n
ei being the angle variable associated with the action Ji (Arnold, 1978;
Goldstein, 1980).

The formalism above was originally developed in order to study orbital
variations in the solar system, and we shall concentrate on this problem in the
present paper. Applications of our approach to the stability of localized
coherent structures in geophysical flows (Wolansky, 1985, Chapters 3 and 4)
will be given in a separate publication.

o
For the solar system, H is the sum of Hamiltonians of several independent



Nepler oscilliators. whose evolution is completely integrable. The perturbation
parameter € is a measure of the mass ratio between planets and Sun, with € <
10_3, and H1 contributes the gravitational interaction between planets.

The approximate solution of this problem as an initial-value problem, by
either numerical or perturbative methods, will lead to errors 0(1) in time 0(1/g).
For the solar system such errors would mean a noticeable deformation of orbits
in a time of thousands of years, a very short time when compared to the age of
the system. Thus stability arguments for the solar system require asymptotic
results, the most powerful ones being given by Kolmogorov-Arnold-Moser (KAM)
theory.

The main conclusion of KAM theory can be formulated as follows: Under a
nondegeneracy condition on Ho, for € small enough and Hi smooth enough, most
of the unperturbed phase-space flow's invariant tori will survive the pertur-
bation. On the surviving invariant t;ri the flow 1is quasi-periodic, with
irrational rotation number which is poorly approximated by rationals (e.g.,
Kolmogorov, 1954).

The conclusion above does not guarantee stability, unless we are dealing
with the case of two degrees of freedom, in which the invariant tori separate
portions of phase space where the motion is aperiodic (Lichtenberg and
Lieberman, 1983). In addition, the theory fails on those invariant tori for
vhich the rotation number is rational (resonant tori) or nearly ratiomnal. It
seems, however, that the solar system is characterized by many resonance or
near-resonance relations (Molchanov, 1969). This observation does not appear
to be consistent with applying the above conclusion of KAM theory to the
system (see also Duriez, 1982).

The obvious importance of periodic (resonant) trajectories served as a

strong motivation for Poincare, Birkhoff and others (e.g., Siegel and Moser,




1971, and references therein) to investigate special periodic solutions to the
n-body problem and their stability. The survival of periodic solutions under
Hamiltonian perturbations for the case of two degrees of freedom is the conse-
quence of the Poincare-Birkhoff theorem which was extended, under certain condi-
tions, to three or more degrees of freedom (Arnold, 1978, App. 9). In the case
of two degrees of freedom, the theorem yields the survival of at least two peri-
odic solutions on each resonant torus, of alternating elliptic and hyperbolic
type. Each elliptic-type solution is surrounded by invariant KAM tori, which
guarantee its stability. No such stability result is available in the case of
three or more degrees of freedom.

Even if we restrict our attention to two degrees of freedom, there is no
apparent reason why the physical system should prefer to stay at or near a
resonance, rather than on a KAM torus far from resonance. The existence of many
resonance relations in the solar system ﬁay indicate, as suggested by Goldreich
(1965), that the purely Hamiltonian formalism is not valid over a very long time
scale, over which nonconservative effects, such as tidal dissipation and radia-
tion pressure, could become significant.

Motivated by such considerations, we study in this paper a system of the

form:

dJi
EE— = € fi(J1 ..... J ,61,. .,en) ’ (1.1a)
i=1,...,n,
de
i o
T2 3J1 + € gi(Ji"" Jn,ei,... Gn), (1.1b)

where fi’ gi are 2n-periodic in the angle variables, but otherwise arbitary.

This formalism models the case of non-Hamiltonian perturbations of integrable




svstems. In practical applications one has to assume:
f.==-T——H +8Ff, . g, =T—"H +6 g, (1.2a.b)

where §i, Fi are the non-Hamiltonian parts and 8 is assumed to be small, but
independent of €. One may expect that, in general, the invariant tori will
disintegrate under such a perturbation. Murdock (1975, 1976) proved certain
nonexistence theorems for invariant tori and indicated that all the surviving
tori will be confined to a small part of the phase space.

Our approach to the problem is based on a differept point of view.
Instead of looking for invariant tori, we investigate conditions under which
solutions will stay on, near or escape far from a certain resonant manifold,
vhich 1is the wunion of all resonant tori admitting a certain resonance
relation. In this way, we expect to obtain domains of atraction for certain
resonance relations, independently of €. In particular, the analyéis
indicates generalizations, in an appropriate sense, of the Poincare-Birkhoff
theorem. ,

Another aspect of the analysis provides a generalization of the theory of
adiabatic invariants. The usual theory concerns only (1.1) of Hamiltonian type
and depending on a slow time parameter. Applications of this theory to Celes-
tial Mechanics have been given by Henrard (1982).

In the present paper we deal, essentially, with the case of two degrees of
freedom. Some of the results can be extended to a larger number of degrees of
freedom and this will be the main topic of a separate paper.

In Sect. 2 we perform a noncanonical transformation of system (1.1) and
average with respect to the fast phase in the neighborhood of the resonant

manifold, to study changes on the el/z-time scale. This yields the system in



—

a standard form (2.8). which highlights the fact that the averaged perturbation
is conservative to leading order. Section 3 deals with solutions in the neigh-
borhood of hyperbolic-tyvpe points. The main result of this section, proved
in Theorem 1. is the existence of a codimension-one familv of near-resonant
solutions. In Sect. 4 we derive Theorem 2, which shows the existence of an open
set of solutions escaping the resonant manifold.

In Sect. 5 we concentrate on the neighborhood of elliptic-tvpe points.
There we wuse the conservative nature of the averaged perturbation to
leading order, and apply a canonical transformation of the averaged system to
new action-angle variables. This enables us to define "slow averaging" with
respect to the el/z—time scale and reduce the system to a pair of equations on
the e€-time scale, decoupled from the other two variables to leading order. As
a result ve obtain Theorem 3 and a corollary, which give conditions for resonant
trapping. In particular, we conclude the generic existence of three types of
attractors: periodic solutions, two-dimensional tori and three-dimensional tori
in certain domains of the resonant manifold. The last type of attractor is char-
acteristic of non-Hamiltonian svstems only.

To complete the analysis of solution behavior near elliptic-type points
(Theorem 3) and near hvperbolic-tvpe points (Theorem 1), we give Theorem 4 on
behavior in the neighborhood of the separatrix between an elliptic and a hvper-
bolic branch of nearly-periodic solutions. Sect. 5 concludes with remarks on
the characterization of purely dissipative perturbations within our general
framework of non-Hamiltonian perturbations. In Sect. 6 we discuss the above
results in connection with the stability problem of the solar system, and the

actual computation of long periods. Three appendices give details of proofs.




2. Reduction and Averaging Method

Consider svstem (1.1) with two degrees of freedom (n=2). where H = HO(Jl.Jz)

is the unperturbed Hamiltonian, given in terms of action variables, and

S\ S\

the perturbations \fif’ \gif are 2n~-periodic in the corresponding angle var-
iables. The perturbation parametef € is assumed to be small, fi and g; are Ck

. . . o . ~k+1
functions, k > 4, in all variables, and H € C .

Substituting € = 0 in (1.1) leads to the integrable system

dJi dei
P o , EE— = wi .1 =1, 2, (2.1)
where Wy = H; , and we use ":=" to indicate a defining identity. Thus, Ji,
i
i = 1, 2 are integrals of the motion and the flow is either periodic (wl/w2 =

rational) or else quasi-periodic.

Given a certain resonance relation p/q where p and q are mutually prime, we

define W = W(Jl,Jz) by
2 92 =1/2

W := (p7+q") (pw,-quw,) . (2.2)

2 1
The resonant manifold Mp a associated with the above relation is a codimension-

one submanifold in phase space given by:

/

: )\
M := 3 J.., 6. : W=0,
b,q i 0. © 0, ¢ T2

bi R S /7
where T2 = Six 51 is the standard two-torus.
We are interested in the characterization of those solutions of (1.1) which
are nearly resonant during the system's evolution, i.e.,
9] <c.
As will be seen later on, a natural requirement for a nearly phase-locked
solution is:

W =0 (J&)



Assumption 2.1. The inequality

/3 (H .o

det
\a(Ji,Jz)I

£ 0

holds in a neighborhood of W = 0.
The above assumption corresponds to the condition that the unperturbed energy

surfaces H° = const. intersect transversally the resonant manifold M . Under

?

Assumption 2.1 we can replace, in the neighborhood of Mp q the action variables

by the pair of independent functions (W, E),

(Ji’JZ) » (N,E), (2.3a,b)

where E = H°. We introduce also the following transformation in angle space:

(pZ + q2)-1/2

1 2
(p? + ¢&71/2 (ad; - po,). (2.3d)

<
n

(pe, + qb6,), (2.3c)

©
1}

Clearly ¥ is a fast and 8 is a slow variable near Mp q-

With the change of action and angle variables above, system (1.1) becomes

W=eF (W, E, o, @ , (2.4a)
E=cF* (W, E, ¢ ¢ , (2.4b)
b = W+ EGZ(W, E, ¢, ¥ , ' (2.4c¢)
¥ = W W, E) +eGE (W, E, ¢, ¥); (2.4d)
here
1 _ o -
Foa=f a7 Wt f5 W (2.5a)
1 2
FZ = w, f, +a, f (2.5b)
: 1 2 ’ .




1
G1:= (p2 + qz) 2 [qgl - ng] , (2.5¢)
1
G2:= (p2 + q2) 2 [pg1 + qu] , (2.5d)
and
1, 2. 2-%
W := (p” + @) 2 (pm1 + qwz) . (2.5e)

All the functions above are expressed in terms of the new set of variables.

On the resonant manifold

By Assumption 2.1 and without loss of generality, we may also assume that
W- 3p>0

in a neighborhood of the resonant manifold, on which the transformation

{Ji} > {W,E} is invertible. Notice that for € = 0, W = 0, ¢ is a constant of

system (2.4), vwhile

¥ = W (0,E) = const >y ,

vhich makes our earlier remark on the new angle variables more precise.
1’ 62) on TZ we define 1its average <g> =
<g> (91, 92) on the trajectories of the unperturbed system by

Given an arbitrary function g(®

(2.6)

S L

<g>:=

T
g g(0,(t), 8, (t)dt



vhere ei(t) are solutions of (2.1) and T = T(E) is the period of the unperturbed

solution on W = 0.

1,92) be a function on T2. Then wunder the transformation

(2.3), g is given as a function on the torus TZ.

Lemma 2.1. Let g(@

where

= 2 21
S” :=R mod 2n(p” + q )2
2, 2-3

while <g> = <g> (§) is a 2n(p”~ + q@°) 2 - periodic function of ¢.

J

Proof. It suffices to consider a Fourier component of g,

exp{i(ke1 + zez)} .

with k and £ integers. 1In terms of ¥ and 6, the above component is converted

into:

N |

exp{i[(pk + q)y + (pt - qk>¢]<p2 + q2> }

As p and q are mutually prime, there exist k, £, k', ¢’ such that
pk + g2 =+ 1, pt - qk =% 1 .
L
Hence g does have a minimal period of Zn(p2 + qz)z in both ¥ and 0.

The average of g over the unperturbed period of 61 and 62 corresponds to
an average with respect to ¥ over its minimal period, keeping ¢ fixed. Thus,
the only harmonic components left by the averaging are given by |

pk + q¢ = 0

or

k=-vyq, t =vyp, v =0, £1, *2
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ey
2
=)
0
(14

1
f 2 2.2 ,\
<g> = =% o ( + )
g > $—vq,¥p exp 1\7 p q ¢f

1

and <g> has indeed the minimal period Zﬂ(p2 + qz).2 - QED

The geometric relation between the standard, 2n-periodic torus Tz of the
1
the resonantly covering, 2ﬂ(p2+q2)2- periodic torus

27
=2 o . 2, 2-1/2
T~ of the rotated, fast/slow variables ¥, ¢, and the minimal period Zn(p +q )

original variables 6., ©

in ¢ after averaging with respect to ¥ is shown in Fig. 1.
[Fig. 1 near here, please]
The representation (2.4) of system (1.1) is valid on an otherwise arbitrary open
subset of phase space for which Assumption 2.1 holds. However, we are interested
in characterizing resonantly 1locked solutions for which ¢ is still a slow

variable (or, equivalently, | W | << 1), presumably near Mp . For this

R4

reason, we want to apply an averaging procedure to (2.4) by a transformation

W+ €y, (W, E, ¢, ¥) , (2.72)

E-»>E+ €u, (W, E, ¢, ¥ , (2.7b)

¢ > ¢ +eu, (W E ¢ ¥, (2.7¢)
where we require ui, i =1, 2, 3, to be uniformly bounded in the domain under
consideration and periodic in ¢ and $. To construct the functions Uy: Uy, Ug

explicitly we need some minor machinerv.

Definition 2.1. Let the operator X be defined on the function space L,
1 := {h: h = h(W, E, ¢, ¥) eCl, <h> (W, E, ¢) = 0} ’
by

X-h :

T h(W, E, ¢, s)ds and <X-h> = 0.

From the definition and Lemma 2.1 we immediately obtain the following:

1
Proposition. X-h is Zﬂ(p2 + qZ)E periodic in both ¢ and ¥, and X' is well
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defined for every integer n > 1 and hel.

This proposition permits us to write

ul = 1—1__. [x.(p1-<[:'1>) - lw Xz'(F1-<Fl>) ] ,
W (W, E) Wi, E) ¢
u, = X [Fz - <F2>] :
W (W, E)
u3 = —1l—— X- l,ul -+ G1 - (Gl>]
W (W, E)

Inserting now the transformation (2.7) so defined in (2.4), we conclude:

Lemma 2.2. System (2.4) is equivalent near Mp q to

4

=1 2 2

W=¢cF (W E ¢ + 0 W) + 0te™ , (2.8a)
E=¢F2 (0, E, 6) + 0(eZ) + 0Cel) (2.8b)
b =W+e W, E, & + 0(e2) + 0(eW), (2.8¢)
¥ = WLR,E) + 0te) (2.8d)

where overbars designate the y—averaged variables

Fi = ¢piseck 1:=1, 2, & = «clreck

and the higher-order terms are Ck_i, well defined in ¢ and ¥ over Tz.
Since we are interested in solutions in the neighborhood of the resonant

manifold, we transform (2.8) by

to

j% W=Fl(E, ¢ + e Fb (E, &) W + 0(e) , (2.9a)
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i 6 =W + Je el (E. &) + 0(c) (2.9b)

Ed{ E =dc F? (E, &) + 0(e) , (2.9¢)

ﬁ ¥ = 716: WO0,E) + 01y (2.9d)
here

F (g, ¢):= F (0, E, & ,

Gt (E, ¢):= & (0, E, & ,

?‘5:= 5% F' i, E, =0

If we substitute now € = 0 in (2.9) we get, on the Je-time scale:

4 5-Fl(, »

cE¢=W’
d . _
dt E=0,

which can be written as

2 A
g‘} $ = Fi (E, ¢) , E = const.
dt



-1 3_.

3. Solutions near the Hyperbolic Branch
Every constant value of E corresponds, due to Assumption 2.1, to a single
resonant torus in phase space, on which the fixed p/q resonance relation

holds. Given E = Eo, we consider the set of roots ¢i, i=1,...,n, of:

F1 (£°, (¢1.(E°)) =0, (3.1a)
subject to
2| £0 . (3.1b)
%6~ IE=E",¢=¢,
i
Definition 3.1. Given E = Eo, we call each root of (3.1) a quasi-preserved
point of elliptic or hyperbolic type if 2 Fl < 0 or 2 Fl > 0.

From the periodicity of El with respect to ¢ and the implicit function
theorem, we easily conclude:
Lemma 3.1. There exist, generically, an even number of quasi-preserved points
on any resonant torus in the resonant manifold. Exactly half of these are of
elliptic type and the other half are of hyperbolic type. Any of these points
can be extended to local elliptic/hyperbolic branches

¢i = ¢i(E)

in the neighborhood of (Eo, ¢1(E°)).
Remark. The quasi-preserved points defined above turn out to be, in the case
of Hamiltonian perturbations, an approximation to those periodic solutions
vhich are preserved according to the Poincare-Birkhoff theorem. In fact, for

Hamiltonian perturbations we have
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¢ -1
[FL (00 do =0, §=2npP+D 2,
o
and thus at least two quasi-preserved points always exist. In the case of

general perturbations, however, the even number of points given by Lemma 3.1
may be zero.

In Fig. 2a we show an illustrative example of a contour of ?1 = 0 on the
resonant manifold. A point (E, ¢) on a branch of quasi-preserved solutions
& = &(E) at which both F1 = 0 (cf. Eq. (3.1a)) and F2(E,$(E)) = 0 is a
stationary point of the reduced phase flow. Such a point corresponds to a
unique periodic solution of Egs. (1.1), as will be shown in Sect. S and
Appendix C. Fig. 2b illustrates the stability properties of elliptic and
hyperbolic stationary points (compare also Eq. (3.2) below).

[Fig. 2 near here, pleasel

Let now ¢i= ¢2(E) be one of the hyperbolic branches given by Lemma 3.1.

Substituting ¢2(E) in the energy equation (2.9c) we get to leading order,

dE _ =2

at - JE F© (E, ¢1(E)) . (3.2)
Assume that

2 F1 >v >0 (3.3)

9¢ o=¢, (B)

for 51 < E K E2 and let E = E°(1) be the solution of (3.2), subject to the

initial condition

E%(0) = E €(E,E,)

172" °

Let T Eo,v be the time in which E°(1¥) leaves the (Ei’EZ) interval. Thus

E°(ve (E,, E,) , 0¢t¢ T Eorv
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0, Eg:v, _
E" (T ) = E1 or EZ .
If ?2 (E,¢i(E)) = 0 for some E e(Ei,EZ), we define T E.v ® . Assume further
J(F+, F%) 3E F 2 20 F 3E F~ < v <0 (3.4)

in (E. ¢1(E)) . E e(Ei,Ez), i.e., that ;Z(E,¢1(E)) is monotonicallv decreasing
in E along ;1 = 0 in this interval. Notice that inequalities (3.3, 3.4) will
both hold for time t = 0(1l/e) or t = 0(1/J€).
Given 8§ > 0 and E as above, define an open neighborhood Ug in the action
space bv
v = {0y, g, |W0ay, 1 - E|+]i] < 5y

and a neighborhood V6 of ¢g(E) by

E

. {¢:|¢ - 9B < 5} :

v
Consider a three-dimensional hyperplane, transversal to the flow near the
resonant manifold and given by, say, ¥ = 0. The following theorem deals with
all solutions of (1.1) which cross the transversal section ¥ = 0 within an open

set in 06 at T = 0.

E
Theorem 1. Assume (3.3, 3.4). Given 8 > 0 small enough, there exist an open
set Eacvg in action space and a continuous map
° -8 8
$:U -WE

(o)
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such that any solution of (1.1) which admits the initial data

¥ =0, ¢ = ®(E,W) for (E, W) ¢ i

will be confined to

(E(t), W(T)) € Uéo , (D) € v‘so
E (v E (v
Eo’v o} 0

for 0 < T <¢<T , where E (1) is the solution of Eq. (3.2) with E (1) = Eo .
In particular, such solutions stay in the neighborhood of the resonant
E ,v

manifold, at least as long as condition (3.3) holds. Notice that neither T °

E .v

nor & depend on €, for € small enough. Thus, if T 0 = o, Theorem 1 vields a

codimension-one submanifold of initial data for which the solutions will stay
near the resonant manifold indefinitely. In this case, the reduced phase flow
of the system is completely portrayed py the flow indicated near point 5 in
Fig. 2b.

Proof of Theorem 1. Let us substitute

E(t) = E2(0) + e(O)

o = 6% + 8()
; o . . 0,..0 0 .
vhere ¢ (t) is given as ¢ (E ) by Eq. (3.1) and E (1) by Eq. (3.2). Using

Tavlor expansion for F1, FZ near Eo(t), ¢0(T), we get from (2.9)

M =Fy0+FL e+ote) +0 " +eD, (3.5a)
g_e-_- -

G = W+ o) (3.5b)
de 2,2

- JE (F2 ¢ + FZ e) + 0(e) + 0(JE(o

dt s +e™)). (3.5¢c)

The coefficients of 6 and e are slow functions of time, since é% ¢° = 0(Je).
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The higher—-order terms in the system above are periodic functions of § as
wvell, with ¢ given bv Eaq. (2.4). However, the whole system can be transformed
so that JEW replace T as an independent variable, thus yielding a closed system
of three non—autonomous equations.

The transformation

is well defined and uniformly bounded according to (3.3). With it (3.5¢)

becomes
e =-JverE g+ o)+ 0vEl + 2%y,
where ( Yo = 8—1/2 d ( y/dy and
E __. L 22
AT = - = Fl - F¢ F
Fi ( E ¢ ¢ E)
]
By (3.4)
ZE oy 2 >u, >0,
max Fl 1
¢
and furthermore
A = 0(Je).
Upon inserting -
1
- FE‘
0 =0 - :I e
F
¢

into (3.5), the term Fé e in that equation drops out, at the cost of

merely changing the higher—order terms. Over all, the estimate 0(Je) +

O(e2 + 92) remains valid for the transformed Egs. (3.5a-c).
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The transformation

)
<
R

=Y
<

+
b

z
<

1 ¢

N

l

[
5>

Y
<
+
b

wvhich is real and nondegenerate, due to (3.3), leads in fine to the system

z1 = Xz1 + h1 . (3.6a)
z2 = - XZZ + h2 . (3.6b)
- - . E

e =-Je \Ne+ h, ; (3.60)

3

e and ¥, with

here hi’ h2 and h3 are functions of zi, zz,
h, =02 +z2 425 +00WE) ,i=1, 2 ,
i 1 2
hy = 0(e) + 0(JE(a? + zf + zg)) .

vhile

i}

\ := JFL > My > 0

$

uniformly over the domain in question and

X = 0(JE)
Thus Eqs. (3.6b,c) describe approximately the flow along the analog of the
stable manifold for a quasi-preserved point (Eo, ¢i (Eb)) given by (3.1).

Introduce now the operator 2, mapping the Banach space IB of three-

component vector functions

- ° Eq,v
(z,(-), z,(-), et-)) e C” (0, T ),

into itself. Component-vwise,
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Eo v

s

1_ _ -
2 = f exp [ f X(w)dw]hi(zi, zz(s), e (s),s)ds ,

T T

2 o T T T _

2" := z, exp [— f X(s)ds] + f exp [- f A widw h2 (zi, zz(s), e(s),s)ds
o 0 s

3 0 - T .E T -F \E -

2" := e exp [—Je { A (s) ds] + { exp [-Jc£ X (w) dw] h3 (21’ zz(s), e(s),s)ds

and 2 depends upon the parameters (z;, e%).

Due to the lower bounds om \ and )\E, it is evident that 2 maps BB into

itself, and the bound is independent of TEO-“ , for every value of the

parameters (z;, e%). Furthermore, one can find 60 > 0 for which 2 maps a
cylinder
_ = .0 0 \
Cio = \zi, z,, e : lzzl+ le” | < 60/21 (3.7a)
into the ball
3 . _J = o eiSres \
Béo 1= \21’ z,.€ : Hziﬂ +n22J+heﬂ<éo[ . (3.7b)

Finally 2 can be shown to be a contraction for a properly defined § < 60 and ¢
small enough, due to the Lipschitz condition obtainable from the higher
differentiability of hi’ i =1,2,3. Thus, we get for every pair (z°, eo) in

Ci a fixed point of 2. Such a fixed point is clearly a solution of (3.6), which

admits the initial data

o - _ 0
22(0) z2 , e(0) = e,

z, (O

T T
f exp [- f X(w)dw]h1 ds
0 s
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Since 2 is a contraction on C2 , its fixed points are continously dependent

§
on the parameters (zo, eo). Thus zl(O) is a continuous function of the above
pair. We can now define UGE as 836’ in terms of (zi, zz, e) centered at EE(Ei’Ez)
and W = 0, ¢ = ¢; (E) for E1 <E < Ez, and 56, VEj as appropriate open sets such
that:
® x v ¢ B
Eo

centered at E = Eb, W =0and ¢ = ¢g (EB)' The function ¢ : 56 > Vgo is given
by the graph of z: = z:(z;, e%) in the above set, and Theorem 1 follows by the
contraction argument. ‘ QED

4. Resonance Breaking and Escaping Solutions

Theorem 1 deals with two-dimensional submanifolds in the three—-dimensional
reduced phase space given by the Poincare map with respect to a transversal
section ¥ = 0. Any initial data on such a submanifold will lead to a solution
trapped at least for a time interval TE°'v/JE near the resonant manifold.

Even more interesting is to find open sets in the reduced phase space for
vhich any solution, initially in such a set, will be trapped permanently on
the resonant manifold. Before investigating such sets, we will deal with the
opposite question of resonance breaking through solutions escaping the
neighborhood of Hp,q
Definition 4.1. An open set D in the resonant manifold Hp,q given by
(E,$)eD c R x S, vill be called an egcape set if there exist €, >0 and 6 > 0
real, such that for any 0 < € < €,» any solution of (1.1) with initial data in
the set Q,

Q:= {w, E, ¢: (E,¢) € D , We [o,a]}

will escape Q at W = §, in finite time. The same definition applies if We[d,o]
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and § < 0.
Notice that neither 8 nor D is assumed to depend on €, as long as € is
small enough, and S$1 is as in Lemma 2.1.
Theorem 2. Let
2"(p2+q2)—1/2

+ qz)f FL (E, $)dé (4.1a)
0

7 - 1 2
F(E):= 7n (p

and assume there is a y > 0 such that

F‘(-pori‘)ponEe(E E,)

10 Ep) - (4.1b,c)

Then there exists an escape set D ¢ R x §1, whose projection on the E -
E,)).

1’7 "2

Before proving Theorem 2, we state Lemma 4.1 and Corollary 4.1.

coordinate lies in (E

Lemma 4.1. Assume F(E) > u on (E E,)). Then there exist, for € small

17 "2
enough, b > 0 and § > 0 such that any solution with initial data in the set

\

& -u E ¢: BNECWSS, E, ¢ E< E, ¢¢€ §1[

1
will escape this set at W = &. The same result applies if ;'(E) < =y, b<oO
and 8§ < 0 for § ¢ W< b Je .

Corollary 4.1. Assume the set W ¢ 0 (W 3 0) is a compact set in phase space, and
Assumption 1.1 is valid on its boundary W = 0. Assume further that FCO((F>0O
on W = 0. Then, the set W< b Je (W > b Je) is mapped into itself for positive

time and € small enough.

Proof of Lemma 4.1. Assume F > ¥ > 0. Consider Eq. (2.8) on the 0(1l)-time scale.
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Then for IWi< & we have

g% = e FL (E.0) + 0(e) + otesd) . (4.2)
Let
~ ~4 -
F := F(E.¢) - F(E)
and
WF o= T F (E,s) ds
Substitute

W=W+e XF/W

By assumption W > bJe and hence
€ X-F/W <(Je/b) max I1x-FI

so that IW-WlI = 0(Je/b). Thus by (4.2)

é% W=-¢ F(E) = O(EZ) + 0(ed) + O(E/bz)
Choosing 8>0 sufficiently small and b sufficiently large we obtain

0(62) + 0(ed) + 0<e/b2) < gu/4 .

Hence
il\
pe W>e p/4
as long as F(E) > p/2, i.e., as long as El < EX E2'
Since dE _ 0(g), we can still decrease § to vield

de
F(E(E)) > p/2

for 0 ¢ t § 8/3ey. Thus, we get at T = &/3ey
Wit) > 6 .
The case F < 0, & < 0 is equivalent. QED
With the help of Lemma 4.1 we can now prove Theorem 2.

Proof of Theorem 2. Let (El, EZ) be as in Lemma 4.1. For every Ee(El, E.) we

2
choose an open set PE e S1 so that for each ¢ € PE

Fl(E, $)>n>0, (4.3a)
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[*"FLg,srds > o, 0 o¢2m(pZeqtr 2 | (4.3b)
¢
The assumption F>o0 guarantees thé existence of PE open for each El ¢ E¢ EZ'
Define now the open set D on the resonant manifold {W = 0} by
o/ . E\
D := \E, ¢ : El < EX EZ’ A f

By Lemma 4.1 it suffices to show that any solution with initial data in D and
W = 0 will cross the manifold W = bJe at a finite time, where b is an €=

independent constant. Using (3.5) and (4.3), we get, on the Je-time scale,
W o=F1 (E% &% + 0(e) > n/2

for (E°.¢°) € D, provided € is small enough.
The function

Qe := -T F1 (£°, @) do (4.4a)
o}

¢

is vell-defined on the covering R of §1, and negative for ¢ > ¢° by (4.3).

The new variable

H: = 1/2 W + 04 (4.4b)
satisfies
dH _
dc - 0(Je)
and hence
IH(t) - H°| = 0(Jet) = O(et) . (4.5)

But W is a monotonically increasing function in the interval (¢°,¢1),
vhere ¢1 is the first zero of ?1 in the clockwise direction say, and -0Q(¢$)
admits a positive lower bound on ¢ > ¢1. This yields a lower bound on ﬁ,

W > JZmin(-0())= K ,

for © > 10, wvhere to is the time at which ¢(1°) = ¢1. Thus
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sy > (1 - ) K.
Let L be an integer feor vhich

L > 2%/ F(E®
and T > 2nL/K + <°. Assuming € small enough. so that

T« 1INE
we get W > b, or W(T) > bJE, The case F(E°) < 0 is completely analogous. QED
Corollary 4.2. If ;1 (E.b) # 0 for El ¢ E ¢ Ez, ¢ € §1, then any point on the
resonant manifold restricted to the above energyv interval belongs to an
escape set.

In fact, in such a case the set PE, defined in (4.3), is the whole circle
si. Notice that PE is simply the cross—-section of D at E = const.
Remark. Theorem 2 does not specify anvthing about the non—empty escape set D
containing a quasi-preserved point or not. Under certain conditions we can
make a definite statement on this matter. One such case corresponds to PE having
a hyperbolic point on its boundary. Thus a whole segment of a hyperbolic branch
can lie on the boundary of D.

This cannot happen for an elliptic branch for which flow on the € time
scale occurs along the branch (see Theorem 3 below), since slow averaging
(Sect. 5) holds up to the degenerate point, ;1 = a?i/a¢ = 0, separating it
from the adjacent hyperbolic branch (see points 1, 4 and 6 in Fig. 2b). The
escape set D alwavs has to contain such a degenerate point, (EO,¢O) s5ay, on
its boundary; then ¢o lies in the interior of PEO. In this case, ;2(E0,¢o)
has the appropriate sign (see points 4 and 6 in the figure), and resonance
breaking does occur in finite time for solutions starting outside D. The case
of approach to D through non-degenerate points along a hyperbolic branch is

more delicate and will be handled in Theorem 4.
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S. Asymptotic Stability of Resonant Solutions

We now turn to the main object of our paper, namely the investigation of
solutions which are trapped for time 0(l/¢) at least in a 0(Je) neighborhood
of the resonant manifold. For that purpose, we choose an elliptic branch, cf.
Definition 3.1 and Lemma 3.1, ¢°(E) on an (Ei’ Ez) interval, and consider a
certain neighborhood of that branch, not necessarily small. Our main observa-
tion at this point is that H as given in (4.4) is a slow variable. A some-
what different definition of H will be more useful here.

Definition 5.1. Let Q(E,¢) be given by

Q. _Fl (&9

o -—
3¢ ’ QE, ¢ (E)) = 0

cf. (3.1). Then

2

- - N |
HE(R,E,&) := = W + QUE,$) + Ve W G (E, )

Y

Consider now W and é formally as a conjugate canonical pair of variables
for the Hamiltonian He, where E and € are constant parameters. The associated

equations of evolution are given by

dé _ oH _ = - 1

at - o =W+ Je G (E.¢$) y (5.1a)
- €

dW _ _oH  _ 1 o - RS |

dc - 2 Fi(E.é) Je W 3 G , (5.1b)
dE _

dt - 0 . (S5.1c)

The phase flow of (5.1) is topologically simple if H® is a convex function of

§,¢ . This is the motivation for the following definition.
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Definition 5.2. Let

a) () > 0 ' El CEZ E2 be given by the condition that

€ _ /It - €\ S\
Vg i= AW & 2 HS (HLE,@) < HE(E)/ x \E; (5.2a)

is a set on vwhich He(ﬁ,E,qn is strictly convex in ;l,cp and (O,E,¢°(E))€VZ. .

Define

v e U ve (5.2b)

Ee(Ei’EZ)

and Ae 1= Vex §1, with 51 defined as in Lemma 2.1 .
b) The perturbed elliptic branch (EP(E),¢p(E)) is given, for each Ee(Ei,Ez),

by the unique minimum of Hs(-,E,-).

€

E is foliated by the family of closed, convex

Thus, for each E e(El,Ez), v

trajectories of (5.1a, b), while

W P@E = - Je GLE,$P) + 0(e) (5.2¢)

oPE = $%E) + 0(e) , (5.2d)

is the unique critical point of H® and depends parametrically on E. We proceed
by introducing action—angle variables for the Hamiltonian He, canonically
related to 5, $ .

Definition 5.3. The action Ie of the Hamiltonian He is defined, in the usual

vay, as

1

€ -
I"(HE) = o= § W de

vhere the integral is taken over the contour Hs(-,E,-) = H . The conjugate
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angle variable, EE, is defined bv an appropriate generating function (see
Goldstein, 1980; Lichtenberg and Lieberman, 1983).

Using this definition, the set A® can now be presented as

e _J

A=

ILE,E.w : 0¢ I° < T&E), E E(El,Ez),EcSI,q’ﬁ-:gl} , (5.3

where I€ = IE(E€<E),E), with HE(E) is in (5.2a). The proposition below follows

€

from the strict convexity of He on A", by substituting H€ into IE(H,E)

Lemma S5.1. If HE € Ck, k 3 1, on Ae as a function of ﬁ, E and ¢, then

IEGL.E) € ).

Thus
€ -1
BoH,E) := |3 | e ¢ F1ia% (5.4)
oH
E=const.
is the oscillation frequency of system (5.1) on the contour HE(-,E,-) = H

Furthermore, under the same hypothesis as the Lemma above, one can also show

the following:

Lemma 5.2 . The angle variable Ee has k-1 derivatives with respect to W, E
and ¢ on AS provided (W,&) # (WP, oP) .
Proof. We can solve for
W=WIE¢® , I>o0,
from
e -
I'(W,0,E) =T |, (5.5

since
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a1t _ a1t aH" aH®

=1
oW OH Ip "ot g o @ oW lgp g

Z0

e_2
E - I S(I,Ev¢) ’ (S.6a)
S := } W (I,E,s) ds . (5.6b)

The fact that S ¢ Ck, and hence Ee(ﬁ,E,¢)eCk—1, as long as (W, &)I#(WP,eP),
follows by substituting (5.5) into (5.6). QED

From the corollary above, and the fact that the transformation of variables
(§,¢) > (Ie,Ee) is nondegenerate for Ier 0, we conclude that W and ¢ have both
k-1 continuous derivatives with respect to IE, Ee, for Ie # 0. The e€-dependence
of Ie,Ee will be suppressed hereafter, unless needed explicitly. We now

define slow averaging with respect to the Je-time scale.

Definition S5.4. Let h be an arbitrary function defined on VZ The slow
L ] [ ]
average h = h (H,E) of h is given by
. T
1 -
ho =3 J n o E ¢tonae (5.7
o

where (ﬁ(t),¢(t)) is the solution of (S5.1) on the level curve Hs = H at E
fixed, and T = T (H,E) is the period of revolution on this level.

We shall use ( - ). to indicate slow averaging of ( - ), by analogy with
the fast average (2.6). In terms of the action-angle pair (Ie, Ee), slow

averaging takes a particularly simple form,
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. 2n
= L (I.E.E) dt (5.8)
h (L.Ey = 5= [ mUILE, . :
0
*
Remark. We denote bv h the average of h in both the {H,E}, and {I,E},

representations, Eqs. (5.7) and (5.8) respectively, and specify the functional
*® *®

dependence onlv when needed. Notice that H = HE(I,E), so that (Qﬂ_]l #(aﬂ—)l

9E H 3E
in general.
For reasons which will become apparent later on, it is useful to define
§€ := J2I®

and we shall drop the € parameter, unless needed; j is essentially the

amplitude of the slow oscillation (see (5.18)). The following lemma is the

cornerstone to our main results

Lemma 5.3. Assume H° ¢ 1, {fi, gi} e ¥ in Eq. (1.1). Let T := Jet = et

AS - {I,E,E,m c R o= WPE), & = P\

be the slow time variable, and AE

Then, on AE, Egs. (2.8) take the form:

di - A%(5,E,E) + Je BS (J,E.E,y;e) (5.9a)
dt 1

dE | g€ (5,E,E) + Ve hE(G,EE, ¢80 (5.9b)
dt Z ‘

& _ 1 g, € ,

dt Ve WEC),EY + hatf,EE,¥58) (5.9¢)
d¢ _ 1 .1 A e . .

- = W(E) + - BL(LEE ¥ie) 5 (5.9d)

and a) Wl € Ck and W ¢ Ck-l, as given by (2.5e) and (5.4), respectively;
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. -1 . . _ € . - . €
vy A° and B are Ck in their variables on A_. with Ck 2 extensions to A .

given bv

1]

b N I [

*
€, . [z o =Py (Pl 4+ Al [ﬂ _ (oH ] 22\
A% (j.E,E) _j\w(w WPy (FL + c¢> + |3g (as) 2, (5.10a)

B€(j,E,E) = F2 , (5.10b)

vhere F1, G2, FZ are all given as in (2.9), expressed in j,E,E dependence, all

partial derivatives being taken with respect to the (W,E,¢,¢) variables;

c) hi’ i =1,...,4 all admit k~2 continuous derivatives 1in AE, h2 and h4 can
be extended as Ck_2 functions over Ae, hl as Ck_3 and
lim lim jh, = h, (E,E) = c(E) cos E , (5.11)

€30 j50 ~ 3 3

where ¢ = c(E) is a given, smooth function of E, and exists uniformly in E and §

independently of the order of the limits.

Remark. In all of the above, the dependence on § and ¥ is periodic, with

2 2 1/2
periods 27 and 2n(p~+q™) , respectively.

Proof of Lemma 5.3. Let j(H,E) > 0. By the hypotheses, H® ¢ CX so that jeCF

in terms of H and E. Taking the t derivative yields

di _1 dIf _1 (_are aH , a1® 3 ) (5.12)
dt j drt j \oH £ dt JE y dt ’
aI® . -1
By (5.4), (5ﬁ—)| = 1/W € C’k , while one can show, using (S.4) and (5.7),
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*

] + 0(Je) . (5.13)

Lol

réQl
BE

N

W, W,é

The second equality above follows from Definition 5.1 .
Using (5.11) and (2.8) ve can compute
dH

dH _ = = v Fpy Flect
g = Ve Wii-E )(FW+G¢) +

3l

dE =
3E dt + ¢h (W.E,¢:€) , (5.14)

where h is Ck"2 in all its variables, and
3h/3é = dh/3W = 0 at (WP,eP) . (5.15)

Substituting (5.13) and (S.14) into (5.12) and dividing by JE, we obtain

(5.9a) with

_1 E/ifdi _ (2 \]
hy =3 [h * 2 \eE © Gg G ) 4 - (5.16)

The equations for E and ¥ remain the same as in (2.9), up to the new change of
variables, while (5.9c) follows by transforming the canonical system (5.1) for

H® to the action-angle variables 1% and Eg, and using again (5.4) and (5.6):

- €
= == W (j,E) + h
Je J 3

Q.‘P.‘
m
=

(3.17)

The differentiability of system (5.9) for j > 0 follows from Lemmas 2.2, 5.1
and 5.2. The rest of the statements of Lemma 5.3 will follow from Lemma 5.4,

which has an importance of its own.
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Lemma S.4. Assume HC(W.¢,E) € Ck. Then W.¢ are Ck ! functions of j . £ 1in

.\E. Moreover. near (Ei,ap) = (Ep,cbp) we have the expansion

_ 1/2 k-2 i o -
W= o+ 2F'% jocos (Err+ T gt P (&) + MG e , (s.18a)
i=2
- k-2 5 k-1
o= oP + 2F5H72 j gin (w0 + L , 51 P?(E) + 35 6%, . (5.18D
l:
Here x = x(E) is an 0(J€) phase shift, F = F(E) = % F (E,$(E)) + 0(Je),

{P?,P?} are E-dependent trigonometric polynomials in E; GW, G¢€ Ck—l and all;

the above are Ck functions of the parameter E.

The proof of Lemma 5.4 is given in Appendix A. An application of this
lemma, together with lLemma 2.2, give the Ck-1 extensions of B, hz, and h4 to
NS The Ck-2 extension of A to the ¢lliptic branch itself follows from the
representation (5.10a) of A. In fact, since W-WP = 0(j), the first term on
the right-hand side of (5.10a) is readily seen to have a Ck-2 extension to

j=0. The second term contains as a factor the deviation of OJH/3E from its

slow average,
*

9H oH

el _ el (

oE (BE) 5.19)
vhich is a Ck—:l function in j, with a null first j-derivative at 0. Thus, A
has a Ck-2 extension to j=0. As for hl’ it also is made up, cf. (5.16), of

two terms. The first term, h, has a critical peint at j = 0, cf. (5.15), and
the second term involves also the deviation from its slow average of some
Ck_l function. Thus, by using Lemma 5.4 again, we get the Ck_s extension for
hl' We leave the proof of Eq. (5.11) for Appendix B and merely remark here
that c(E) > 0 or c(E) < 0 if ¢°(E) is increasing or decreasing in time,

respectively. This concludes the proof of Lemma S.3. QED
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We are now in a position to state the main result.

Theorem 3. Consider the system

] *

di _ 4 (j,E) , (5.20a)
dt

dE _ * .

dt = B (j,E) , (5.20b)

* *
where A , B are the averaged functions AE, Be given by Lemma 5.3 evaluated at

_ . * o+ £ L.l =1 J \ L )
€ = 0; the domain of A ,B is A"_/S'xXS". Assume \fi’gi[’ i=1,2, in (1.1) are

Ck functions, Ho € Ck+1 with k » 4. Then, for € sufficiently small:

a) Every hyperbolic critical point P (limit cycle v) of (5.20) in the
domain of A‘,B‘ above corresponds to a two-dimensional (three-dimensional)
invariant hyperbolic torus of (1.1), given in terms of E;j,E,w by an o(1)
perturbation of Pxsixsl or YxSixgl, respectively.

b) Consider

A

D(E) := 1 F

a1Ft)
s

% + ai +

-

all evaluated at ¢ = ¢p(E) (or, equivalently, at j = 0). Then, if D(E) < 0 on

a subinterval (E', E )C(Ei’ EZ)’ there exists & > 0, independent of €, such

1 2
that any initial data on the cylinder %6 ,
N P S ; gt
%6 1= \J,E. 0¢ j¢ 48, E1 ¢ E ¢ Ez f X S7xS R (5.2

can leave €, only at E = Ei or E = EZ' Furthermore, if

6

2

then %6 is a subset of an attractor basin of (1.1)

» .
B (E,.0) < 0 < B (El, 0 |, (5.22)
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c) Assume
* 5 * 0
B(E.0) =0 , =B (E,0) <0 E e(Ei,Ez) . (5.23a.b)
If the assumptions of (b) also hold, then there exists a é-neighborhood of
{j = 0, Eo} X 81 x Sl which attracts solutions of (1.1)(see point 2 in Fig. 2b).
In general, conditions (5.23) guarantee existence of a single periodic orbit in
a neighborhood
l6-dP(E) 1€0¢e), IWI ¢ OCe), IE-E°1 ¢ 0(Je)
and its period is close to that of the unperturbed system at E = E°. This
periodic solution may be surrounded by a two-dimensional attracting torus at
an 0(Je) distance from the elliptic branch at E = E° .
A slight generalization on the hypotheses of (b) is given in
Corollary S.1. Let &8>0 such that
E ]
A (E,8) <0, °~
* * .
B (EZ,J) < 0<B (El’ 3,
in0¢ j¢<$ &, E; ¢ E ¢ Eé . Then the cylinder 26, with the above &8, is an
attractor basin of the flow (not necessarily maximal). In particular, any
initial data inside the cylinder give rise to a trapped solution satisfying the
resonance relation p/q .
Proof of Theorem 3 and Corollary 5.1. Consider Eq. (5.9c). If € is small
enough, (5.11) guarantees that, for

j>ble , b>O,

ve get

€ 1 c(E)
Ih3| ¢ Je b

By choosing

b > 2 IC(E) I

e 10, B
E,¢E¢E, ,
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(5.9¢) vields

Tl
w
|~
NI
'
v
—

So, for j > b Je, we may applv averaging to (5.9a,b) by an 0(Je) change of

variables J = j+ 0(Je) , E=E- Eo + 0(Je) . to obtain

i * -
Qé = A (J,E) + 0(Je) (5.24a)
dt
I * -
gg = B (J,E) + 0(Je) (5.24b)
dx
together with (5.9¢,d) appropriately transformed. Notice now that

- * *
substituting €=0 into (S.9a,b) changes A, B only by 0(Je) terms so that A, B

can be computed at €=0 without changing the leading terms in (5.24). The
conclusion of (a) follows by linearizing (5.24) near its critical point
(limit cycle) and applying the stable/unstable manifold theorem for a system
of the above type (see Kelley, 1967, Theorem 4).

The averging process cannot be extended too close to the elliptic branch

* *® -
j=0, but A and B are Ck z in the neighborhood of j=0 by Lemma 5.3.

Thus
* *
A(j,E>=-é§.A i+ 0G5
J _]'_'0
E
since A (0,E) = 0. Therefore, given 8 > 0 small enough, independently of €,
* 1
A (j,E) < 0 for j¢é , Ee(Ei,Ez) , provided
9 ,* ¢ Ee (E' '
37 A o , € 1t EZ)

3=0
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The above condition can be shown to be equivalent to D(E) < 0 as given in (b),
using (5.10) and (S5.18). Thus, the first part of (b) follows by considering
the averaged system (5.24) at j=8, away from the elliptic branch, and using
the fact that j=6 separates the four-dimensional phase space.

Turning to the second statement of (b), we consider the averaged system on

the set

J
\

JE:blc ¢ J< &, E= Ei , \

to conclude that solutions cannot escape %6 through the above set. For
O%ijJE we notice

- » -
B (j,E,E) = B5(0,E,E) + 0(Je) = B (0,E) + 0(J&)

due to the Ck-1 differentiability of B at j=0. Thus, the non-averaged system
(S.9a,b) gives trapping within the interval (E;,Eé). This concludes the proof of
(b) and the corollary.

As for (¢), BE(O,E,E) = B‘(O,E) = ?2 on the elliptic branch. Hence we get
irom (5.23a), by using (5.11) and (B.5), that c(E°) = 0.
Thus, restricting ourselves to the domain

{IE-EOI( ade , j>b JE} . (5.25)

we obtain

- 1 0
Jealc (E")1 + 0¢e) 4 a + 0
be 7 b€ (E7) + 0(1)

TT
If we choose

a W (0,E)

< 1}
e (E%)1

and a,b arbitrary if c¢"(E%) =0, ve get

&g _ W 1 = _a o §
ol hy » 7o (0 - Lic E%H = 07y




uniformly in the domain (5.25). Thus, we can perform the averaging throughout

the above domain. Now, we can assume

h1<j,E.E.¢;e) = h: (j,E,E) + O(e“z)

by carrying the fast averaging of Sect. 2 on to the next order. Then we apply

0

the slow averaging to AS + JEhi to conclude, with J and E as in (5.24) that

d ~ * ~ ~ - () * ~~

—=J=A U,E) +Je (h)) (J,E) + 0(e) , (5.26a)
dt 1

d =~ . T -

—=E=8B (J,E) + 0Je) , (5.26b)
dt

with h: t-:Ck-3 by the assumption of the theorem. Thus, if h:

(0, Eo) > 0 we

get an attracting point of (5.26) at

. hw,E"
J = e

. + 0(g) .

0

A L(0,ED)
J

which, for € small enough, is well imbedded in the domain (S.25). Applying
again the stable/unstable manifold theorem to (5.26) together with (5.9¢,d)
we obtain the existence of an attracting torus in the above neighborhood.

To prove the existence of a unique periodic solution, rather than a torus,
with period 0(1) satisfying the estimate of Theorem 3, we have to return to the
nonaveraged Eqs. (2.4). Then the claim follows by applying the implicit
function theorem to the transformed Eqs. (2.4). The full proof is given in
Appendix C. QED

The existence proof of surviving periodic solution, given in Appendix C,
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also yields the uniqueness of such a solution in a 0(Je) neighborhood of the
stationarvy point (5.23) on the elliptic branch. We cannot, however, conclude
anvthing about long-period solutions in a 0(g) neighborhood of such point, nor
the details of the flow there. This is due to the fact that slow averaging can-
not be carried out inside the domain (5.25), unless the exceptional case c'(E9)
= 0 holds. Outside a certain neighborhood of the stationary points, we conclude
that the flow in the annulus
S

- ®
Ni=ible<j<s , IB(O,DI>S

\
/

is transversal to the energy surface, provided b is large enough and 8§ is small
enough, both independently of €.

The flow in N also oscillates around the elliptic branch with an 0(Je)
period due to the natural oscillation of the Hamiltonian system (5.1). Inside a
0(JE) neighborhood of the elliptic branch, the above oscillations stop and reverse

direction at the contour:

- Je c(E) sin E .,
W (E,0)

0¢ j= (5.27)

as can be checked out by setting

£ .o
dat
in (5.9¢c), and using (5.11).
In Fig. 3 we illustrate the flow inside a Je neighborhood of the elliptic
branch at nonstationary points, where ¢°(E) is clockwise increasing in time.
In the case ¢°(E) increases in the opposite direction, the whole phase portrait

should be reflected in the vertical axis since c¢(E) > 0 in this case (see remark
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at the end of the proof of Lemma 5.3).
[Fig. 3 near here. pleasel
So far we concentrated on the small neighborhood of a hyperbolic branch
$ = ¢°(E) (Theorem 1) or on the arbitrary neighborhood (not necessarily small)of
an elliptic branch (Theorem 3). The method of slow averaging clearly fails very
close to the separatrix associated with a given hyperbolic branch (see Figs.
2b and 4), since the period of the oscillations becomes unbounded and the
distinction between the Je time scale of the oscillations and the € time scale
of energy evolution breaks down. In particular the two equations (5.20) no
longer represent system (2.4) to leading order very close to the separatrix:
there the evolution of solutions depends essentially on the phase § as well as
on the action variables E, j. To analyze the flow near the separatrix it
helps to define the E-dependent functional
~1 .21

T=-2 1
M(E) := _i Wy + 6+ 5

[ -]
y dt - + 2 | W F2 4t (5.28a)
$ 2 o

where the integrand is taken over the separatrix of the Hamiltonian H = HE (e=0)
in (5.1), evaluated for E fixed.

Remark. This definition is inspired by the well known Melnikov (1963) function,
hence the use of M in the notation.

[Fig. 4 near here, please]

Theorem 4. a) M(E) is well defined for every value of E inside the domain of

h
a hyperbolic branch ¢é = ¢ (E) (Definition 3.1)

b) Assume

M(E) < 0, E.'1 CEL EZ ' (5.28b)
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where (Ei’ Ez) is an interval on which both an elliptic branch ¢9<E) and an

adjacent hyperbolic branch ¢h(E) are well defined (Fig. 5). Then there exists

8(e), with lim &(e) = 0, such that any solution of (1.1), initially in the
€0

domain:

=I5 . TE)- H( 1
D := \W.E ¢, ¥: HE)- HOLE ¢ > 8(e), Ej < E< Eyf

can escape resonance (i.e., cross the separatrix of H) only at some E > Ez or
EX Ei'
In particular, condition (5.28) guarantees trapping of all solutions inside

the separatrix of H, up to a set of arbitrarily small measure for € small

enough.

Proof: The convergence of M(E) follows from the nondegeneracy condition of the

hyperbolic branch (3.1b). Consider now a solution of (5.1) with Hamiltonian

H(W.E,¢) = H(E) - & E e(E,, E)) , (5.29)

where H(E) := O(E,¢h(E»,and let T(8,E) be the oscillation period of this solution
for fixed E in the given interval. Assertion (b) of the theorem will follow if
we show that, at time T = T(§,E) ,

H(E') - H(W',E', &) > & , (5.30)

wvhere W', E', ¢', are given as the solution of (2.8) at time T(§,E).
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The left-hand side of (5.30) is estimated by

TG.E) _
= [H(E) - H(W,E,dﬂ dt + O(ce

T(é.E))
dt

' (5.3

where the integrand is taken again over the contour (5.29), for the same, fixed
E. Since the integrand of (5.31) is periodic with period T(§,E), the integra-
tion limits can be changed to {-T/Z, T/Z} . Using (5.9b), (5.10b) and (5.14),

one can write (5.31) as

T/2
JE f {é% (E(E)_ H(E,E,¢)) Fz - ﬁz (F% + Gi)} dt + 0(eT) + O(EQT). (5.32)
-T/2

Using integration by parts, the T-periodicity of the integrand and the
identity H(E) - H = W2/2 (cf. Definition S.i),we take the derivative 3/3E out-
side the integral sign in (5.32) and rewrite it as

T/2 T/2

1 y+ 1 2 Wl F2 du .
Iy 2
-T/2 ~-T/2

As 620, T(S,E) » » and the integral above converges to -Je M (E). The result of
the theorem follows by choosing €, 6 sufficently small so that

T(,E)

- Je M(E) > Ofge ) + 0(eT(8,E)) + 0(JeS) . QED

Remark. If system (1.1) is of Hamiltonian type, and depends explicitly on time

due to a slow parameter X\(et), system (5.20) is degenerate and Theorem 3 is




void. In fact. we get in this case

IR S
F (BXH)d; B (E) ,

while the second term in the definition (5.10a) of AE is identically zero. As

for the first term of Ae, it can be shown that:

_2 Ai A1 - _2 i
W (Fw + G¢) We F(E) 36 <H> ,
where <H> is the ¥ average of the Hamiltonian perturbation inducing {fi’gi} in
(1.1) and Ff(E) a given function. The term above vanishes under slow

* -
averaging with respect to E, and thus A = 0(Je). Thus, (5.26a) indicates that

j, or I, is an adiabatic invariant and undergoes 0(Je) variation over an O(e—i)

time interval.
For general perturbations {fi,gi} however system (1.1) is often dissipative.
A condition for dissipative behavior over 0(8—1) time can be stated, in terms

of the twice-averaged system (5.20), as

Near a stable elliptic point this condition is certainly satisfied, since
both BA‘/BJ and B/B./aj are negative. In a neighborhood of a more general
attractor, cf. Theorem 3, condition (5.33) does not have to hold at every
point of the attractor basin, but does hold asymptotically as orbits approach

the attractor.
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6. Summary and Discussion

We have studied the neighborhood of a given resonant manifold M , of
an integrable Hamiltonian, in the presence of general perturbations
(1.1,1.2). Under suitable technical conditions, it was shown that the
Poincare-Birkhoff theorem for Hamiltonian perturbations in two degrees of
freedom generalizes as follows: 1) There exist pairs of alternating elliptic
and hyperbolic quasi-preserved periodic solutions, appearing as points on a
suitably reduced, two-dimensional representation of M (Lemma 3.1). 2)

s

Near hyperbolic points there exist open escape sets of initial data on Mp,q
which lead to solutions leaving in finite time an €-independent &é-neighborhood
of Hp,q (Theorem 2). 3 Near elliptic points, invariant manifolds of
solutions exist and are stable in the 1large, having one, two or three
dimensions (Theorem 3 and Corollary S5.1).

An attempt to draw a global phase pertrait of solutions from these results
has to take into account the whole set of resonant manifolds in phase space.
In fact, since resonant tori constitute a dense set, there exists a resonant
manifold np’q arbitrarily close to any point in phase space.

However, a careful consideration of the averaging procedure of Sect. 2
will indicate that any integration over the fast phase ¥ will contribute an
0(Jp2+q2) term. Since in the process of averaging we had to integate twice
with respect to the fast phase (see definition of u1 in Eq. (2.T7a)) the 0(¢)
terms on the right-hand side of (2.8) are, in fact, of order e(p2+q2). For our
analysis to remain valid, these terms should be kept small with respect to the
0(Je) terms. Thus we may define a near-resonance relation by

Jeip+gh <« 1
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for anv p,q mutually prime. Hence, for given €, we need consider only a
finite set of resonant manifolds, and this set will increase as € becomes
smaller.

It appears therefore at first that the smaller the perturbation, the
larger the possibility of trapping by high-order resonances. This 1is,
however, not the case. For high-order resonance, the deviation of ;‘1(E,¢)

from its torus average F(E) (Eq. (4.1la)) becomes small,

FL(E, &) = F(E) + 0(8) ,

where 8 is a new ordering parameter which depends on the order p2+q2 of the
resonance and the smoothness of ?‘1. Since F(E) has, generically, a discrete
set of nondegenerate zeroes on any E-interval, and no degenerate zeroes, ’I-:i
will have, for high enough resonances: a definite sign on any E-interval,
excluding small regions near the roots of F. By applying Corollary 4.1 we
find that any part of the resonant manifold for which ;1(E,¢) # 0 on the whole
torus labeled by E will escape the resonance. Near the zeroes of F the
function ?2(5,4,), which can also be approximated in this case by a function of
the energy alone, is generically nonzero, and the solution will be pushed away
from the zero neighborhioods of -F-', thus escaping the resonance. Hence, capture
by a high~order resonance is really an exceptional phenomenon in the presence
of any dissipation.

One may try to explain then, in the spirit of the observation above, the
low-order resonance relation 2:5 observed for the periods of revolution of
Jupiter and Saturn. The Sun, Jupiter and Saturn constitute the most massive
bodies in the solar system, and their motion, neglecting other bodies, is

governed by equations with six degrees of freedom in center-of-mass coordinates.
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However. two pairs of degrees of freedom are degenerate, due to the existence
of additional invariants, besides energv and momentum (Goldstein, 13980), so0
there are only two independent frequencies, corresponding to the periods of
revolution of the planets on their unperturbed ecliptics. Hence, the analysis
can, in principle, be carried out in a way similar to the case of two degrees
of freedom treated here. In order to find, however, the actual domains of
resonance capture, we have to know more about the non-Hamiltonian part of the
perturbation.

The idea that resonances among the Galilean satellites of Jupiter are due
to tidal dissipation goes back to Laplace. Tidal effects are used routinely
in calculating the ephemerides of the moon. Still, much 1less is known
quantitatively about the effects of tides, radiation pressure and other non-
conservative phenomena in the solar system (Buys and Ghil, 1984, and further
references therein), than about the .éravitational interaction between the
svstem's main bodies, on which attention has justifiably focused during the
last 200 years of celestial mechanics (Deprit et al., 1984). Motivation to
study dissipative and forcing effects comes from the fact that proxy data on
periodicities of orbital parameters millions of vyears ago are starting to
appear in the paleoclimatological literature. Hence quantitative verification
of actual orbital calculations valid over 107—108 vears might be possible in
the near future (ibid.).

To consider the full set of 8 resonance relations suspected to exist
between the solar system's 9 planets (Molchanov, 1969), one has to extend the
analysis to more than two degrees of freedom. This extension is by no means
trivial, since slow averaging (Sect. 5) is in general impossible for n 3 3.
Still, certain explicit conditions can be derived under which part of the

asymptotic stability results presented here apply. These generalizations will
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be taken up in a separate paper.
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Appendix A. Proof of Lemma 5.4
Bv an E-dependent translation and rotation of the coordinates we may assume

(¢p, W) = 0 and H° takes the form:

152 2 i =
H =W +F “+ ¢ a. w¢ +h (A.1)
2 ¢ 3¢ireck 1t ¢ '

h = 0(¢k + Ek) € Co, and all coefficients have a Ck dependence on E.

Introduce now the canonical set of coordinates Io, Eo by the transformation

- 1/2
W= 2roc2m /% cos E° , (A.2a)
179 1/2
o = 2ro2m Y2,V gin g® . (A.2b)
ith (A.2), Eq. (A.1) takes the form: -
. . 1/2 gz o
H =¢°1°+ ¢ 10 P (E®) + I c1°, g% . (A.3)

3¢ic¢k

where Pi are trigonometric polynomials in Eo, G is C1 in ¥I° and ¢° = (2F)1/2.

The proof proceeds in 2 steps:
o - -

. o . .
a) There exists a canonical transformation: (I, £ ) - (I, E), analytic in

Jfa, E? which transforms H® into

. K2 - _ .
=B + T °&I,0 (A.4)

where

(k) o

1 =3/2 k-2 -k/2
c =g o I

+ 0 I + .. +

(1]

and G is continuous. For brevity the E dependence of all the terms has been
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suppressed.

v) There exists a canonical transformation (}, E) - (f, E) taking (A.4) into

H = o (D (A.5a)
with
k
I-T+12¢, (A.5bD)
k=2
E-f+1 2 g%, (A.5¢)
and Gi, G2 continuous.
Proof of (a). Assume we have the transformation (IO, Eo) - (I', E'), analvtic
in JIO, by which
- ' 1/2 ' k L | ' '
W= 2r'ent’?y Yoos £ +EI Vel 1 M2 (A.6a)
1:
' - 1/2 ¢ k L] ] ]
o= 21 2 Y5 sink +LT V2 p¢ ') +1 M2 (Aeb
l:
:n terms of which He takes the form
o=y s g 1 V2wt W2 M ey an
n¢isk J
vhere n 3 3, while P and G are as in (A.3). Introduce now the generating

function
"o 1 /2 (n) '

s=r1"¢ - 51 pp @,

* ’ *
vhere §<P = (1/2m) f (P - P )dE , P being the period average of P. Then, the

transformation (I', E') > (I", £") can be given in an implicit form
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v " _l nn/z (n) '
= - e (A.8a)
" 1 "(n_Z)/z 1]
£ =g - g g-p'™ (' . (A.8b)
20 n

It is evident that (A.8) is analytic in JI' and €' if I' is small enough.
The transformation (A.8) can be written explicitly by a convergent powver
series in (I")llz. In particular, applying trigonometric polynomials on both
sides of (A.8b) and expanding into a Taylor series up to desired order, we may
introduce

P’y = pM ") 4 M2 1"(1—2)/2 P(E") + I"(k+1)/2 g «a',g™ ,

n n i=n i
vhere G is an analvtic remainder and ﬁi are trigonometr?c polynomials.

One can easily verify that, by this transformation, (A.6) keeps its general
form, with a proper change of the definition of P?, P? » J ¥3n - 2,and Gw, G¢.
Substituting (A.8) into (A.7) we obtain

€ k I"i/Z P(n+1)(E") N I"k/Z G(n+1) o "

B = o™ (" + ¢ . A AT
ixn+1 1

where

- * n/2
M ="V + (P;m) I

 J
P being, as before, the period average of P. The proof of (a) is completed

by induction on n up to n = k.

Proof of (b). Using (a) we can define f, E by which HE takes the form (A.4) and

(A.6) holds. Define the new action f, as a function of He, by




-So_

(A.D

it
a
[l
o
I
A
ol

€
where the integral is taken over the contour H =C . OonH = C, we get, bv
(A.4),

_k/2
o (I) =C + 0(I )

and, since do(k)/df # 0 for I small enough,

vhere o(k)(C') = C. Thus, from (A.9),

. _ __k/2
IeH =T + (T

The angular variable E can now be calculated by means of the generating

function

S(

i~
o~
f
T
-
-
—_
)
a
A
]
it
~
+
o
-
=
~
)
-

from which we get

. _(k=2)/2 _ (k=2)/2
E=E + 0l ) = E + 0(]T )

Substituting f, E; in (A.6), instead of I' = T and £' = f, we can verify that
the expansion 1is unchanged up to power k-1 of JI. The final form (5.18) is
obtained by substituting j = (2?)1/2 and applying again the translation and

small (0(Je)) rotation to the original variables 5, $.
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Appendix B. Behavior of the 0(Je) Frequency near the Elliptic Branch

We prove here Eq. (5.11) in Lemma 5.3. Introduce the new variables:

- - -1/72
p=F 1/4JI sin ( £ + k) (2 Fi/z)

j sin (§ + k) , (B.1a)

]

- 1/2
q=F"% T cos (E+x) = 2F7%)7"" j cos € + x) , (B.1b)
where F, k are as in (5.18). It is easily shown that (p,q) are a canonical pair

for Hs, related by a canonical transformation to 5,¢. By (5.18) we get

WP 2 .2

Ww=w +q+3j“6° Gy, E © (B.2a)
6 =¢PE) +p+jtct G, E O, (B.2b)
i 2 k-1 .
and G°, G" e C in all variables by Lemma S5.4. From (B.1) one then obtains
dE 172 ~1/2 dq 172,172 dp
J dt = [(2 ) sin (E + k) oy (2 ) cos (E + k) dr]
L7 . \d_F_%]
+ j[4 \ sin2(§ + K)/ progiir (B.3)

As F = F(E) and x = x(E) are both smooth by Lemma 5.4, and dE/dt tends to a
definite limit as j 2> 0 by the Ck-i extension of the right-hand side of (5.9b),
the second term of (B.3) tends uniformly to 0 with j. As for the first term,

ve get by (B.2):

p

do _d¢ _d¢" , ,di 1 2. dE

dt “dr "at tlac € TO0UD g (B.4a)
dg _di _dWP . di 1 2, &

dt = dt dc + o G" + 0(j) dt (B.4b)
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Since dd/dv, dﬁ/dt, dj/dt all have a bounded limit as j - 0, and Ep,¢p are
smooth in E we conclude. upon substituting (B.4) in (B.3), that j dE/dt has a
definite limit as j > 0.

In order to evaluate this limit, one sets j = 0 in (B.4) to yield

p
dp - de _do (B.5a)
dui . _ dt dt
j=0
dq di _ awP

dt|j=o T dt  drt (B.Sb)

We now evaluate the leading terms, up to O(JE), of (B.5) which contribute
to (B.3) in the limit j=0. To evaluate the contribution of dé/dt and dW/dt we
use (2.9a,b) and compare it to the Hamiléonian system (5.1).

Those terms on the right-hand side of (2.9) which equal the ones present
in (S.1) will contribute only to the value of ﬁ(j,E) = dt/dt (compare (5.4)
and (5.9c)), which is uniformly bounded at j=0. Thus, nonzero contributions to
j dE/dt at j=0 will come only from those terms in (2.9a,b) which deviate from
the Hamiltonian formalism of (5.1). Since 0(1) terms are identical in both
svstems, we consider 0(Je) ternms. These terms are also identical in both

systems for d¢/dt, while comparing (2.9a) to (5.1b) shows that dW/dt includes a

deviation

_-1\1 l\l
Je W(G¢ + Fw)

At j = 0, W = W which is of order Ve (see (5.2c)). Thus, dW/dt contributes

nothing to 0¢Je), and the only contribution to this order in (B.3) comes from
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0

p o A
o _ de +0(e)=g—§— FZ + 0(¢)

dt = dt

Substituting the above in (B.3), dividing by Je (upon transforming to the

T = Je T time scale) and letting j » 0 we get
d 13 as® ~
j & = (2 F2)° £ F2
dE
By evaluating d$°/dE from definition 3.1 we obtain c(E) of (5.11) as:

14 0, - ~ -
cE) = (22 2 . _ A F2 (B.S)
dE €,

Appendix C. The Existence of Unique Periodic Solutions
We introduce the following variables in a 0(Je) neighborhood of an

elliptic branch (Wp, ¢p):

Wo=w- WeE® (C.1a)

o' = ¢ - $PED (C.1b)
v (4]

E' =E-E, (C.1¢)

and drop the primes for convenience. Substituting these variables into (2.4),
we eliminate (2.4d) by using ¥ as the independent variable. Denoting ¥ by t
we are led to the nonautonomous system

W

cUi(W, E, ¢, t; €) , (C.2a)

.
n

€Uy (N, E, ¢, t; €) , : (C.2b)
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b= W+e V,(H, E, ¢, t; € , (C.2¢)

10 Uy V2 are Ck in all variables and with fixed period in t, which

we shall take for simplicity to be 2mn.

where U U
From (C.1) and the definition of Eo, ¢p, wve get

pP-U P-U

]
(=]

at € = W=E = ¢ = 0, wvhere P stands for the t-period average. Define now

G, (z., z.) :=P-U.(0, z
2 1

i 3 t; O), 1 = 1, 2.

2’ %3’

Then, 51 for i =1, 2 is k times Lipschitz continuous by assumption, and

GI(O,O) = G2 (0,0) =0 . (C.3)

The statement of Theorem 3(c) follows from the following.
Lemma. Consider (C.2) with the assumptions above. If, in addition,
JG = =—GC —&——él—é +0 (C.4)

3 3 3 9
322 i 323 2 323 Bzz 2

holds at z, = zy = 0. then there exists an isolated 2n-periodic solution of

(C.2), which is 0(e) in the maximum norm.
In fact, one can easily check that (C.4) is equivalent to (5.23) by the
definition of B® 120 and that of the elliptic branch (Definition 3.1).

Proof of the Lemma. The proof is a generalization of the method introduced by

Hale (1980, Sec. 5.3) for non-hyperbolic systems. Define the Banach spaceIB as
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_J . o\
B :-= \zi(t), zz(t), zs(t) : zi(t) ig continuous and 2n perlodlcj ,
with the norm izl = max (maxlz (£)]). Let X be as in Definition 2.1. For

i=1,2,3 t 1

each € > 0 and constants &y az, &g define the operator T:B-B componentwise as

T1 = ea1 + cR(I-P)U1 (zi(t), zz(t), za(t), t; €) , (C.5a)
T2 = a, + eX(I-P)U2 (zi(t), zz(t), zs(t), t; €) , (C.5b)
T3 = “3 + eR-R(I—P)Ui<zi(t), zz(t), 23(t)' t; €)

+ eR(I-P)VZ (zi(t), zz(t), zs(t), t; €) . (C.5¢)

It is evident that T is continuously dependent on €, « By the Lipschitz

3
property of U&, Vz we can find € > 0 for which T maps the unit ball into
itself and is contracting. Hence, we find a fixed point ; = 3 (3, t, €) of T

>

for any & = (ai, ®os &,) and € small enough. It can be checked easily that

3
5 2 > 2

z(x,t;e) is continuous in &, € and Lipschitz in a (by contraction). By the
definition of X, ; is also differentiable in t.

Taking the t derivative of (C.S5) we get

z1 = e(U1 - P~Ui) , (C.6a)
z, = €U, - P-U,) , (C.6b)
z_ = eR(I-PYU, + e(I-P)V (C.6¢)

3 1 2°
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v

ne last equation can be written, due to (C.5), as

23 = e(I-P)Vz + z1 - € ai . (C. T

where we substitute z = z(&,t:€) in (C.6) and (C.T).

Now ;(a,t;e) is a solution of (C.2Z) provided

p-u, =0, PU, =0, PV,+ax =0. (C.8)

z.(Q,£:0) = &

2’ 3
Let &, = &, = 0 . Then, by (C.3), at € = 0

p-u, = P-U, =0 . (C.9

Define now:

? (a;E) :IR3 X [0, e%) -*lRS

for eo small enough, as

&)
"

P-U, (Z(Q,t;€),t;€) = F, (eq,,q,,q.;€), 1 = 1,2 ,

i €% %0 %3

)
.Il

> >
. . . £ = -
P V2 (z(ax,t;e),t;e) “1 Fs (ai’“Z’“3’€) .

Then, F is continuous in € and Lipschitz in &. At ai =€ = 0, we get Fi = Fz =0

by (C.9), while we choose
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0
ai = P V2 (0,0,0;0)
Hence
Y -
Fa(ai,o,o,e) =0 .

€=0

By definition, ? is also differentiable at € = 0. One can now check that
det fvi‘l Vo g@ +o
Sl B

by (C.4). An application of the implicit function theorem (in some weak

.)
version) leads to the existence of a&(¢) for which

>
?(a(e);e) =0
if € small enough, and thus to the satisfaction of (C.8). Hence, g(a(e),t;e)
is a fixed point of (C.5) which is also is a solution of (C.2). The
uniqueness follows from the uniqueness of the implicit function together with

the observation that any solution of (C.2) must be a fixed point of (C.3).

QED
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List of Figures

Fig. 1. Sketch of averaging on the Je-time scale, 1llustrated for a 2:1
resonance. One of the original Tz—tori is shaded with fine dots. The covering
torus T2 is outlined in heavy dashed lines. The minimal period in the slow
variable ¢, after averaging with respect to the fast variable ¥, is indicated by

heavy solid lines.

Fig. 2. Diagram of quasi-preserved solution branches. (a) Elliptic (solid
circle) and hyperbolic (open circle) quasi-preserved points. The resonant mani-
fold {W=O} is shown as a cylinder, after averaging with respect to y. To each
value of the energy E corresponds in this diagram two, one or no pair of quasi-
preserved points. The elliptic and hyperbolic branches are separated by verti-
cal tick marks. (b) The dynamics of flow along the quasi-preserved solution

branches. Arrows indicate the direction of slow changes (on the e-i time

scale) of E (see Eq. (3.2)). Point 2 is a stable elliptic point (see Theorem
3c), 3 is an unstable elliptic point, S is a hyperbolic (unstable) point (see

Theorem 1), points 4 and 6 correspond to resonance breaking (compare Theorem

2), and 1 to resonance trapping.

Fig. 3. Projection onto a plane E = const of the flow near the elliptic branch
at a nonstationary point, where d¢p/dt < 0. The light solid contours represent
Hamiltonian-like osciliations around the elliptic branch, and the heavy dashed
line represents the contour (5.27) on which the direction of the flow is
reversed. The characteristic time scale of oscillation is JE, the center of the
oscillations changes on an € time scale, and the amplitude and period of

oscillation changes on an €3/2 time scale.
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Fig. A4. Large—-amplitude oscillations centered on an elliptic branch and
bounded by the reconnected <(homoclinic) separatrix at the boundary of the
adjacent hyperbolic branch. (a) Projection onto the resonant manifold (compare
Fig. 2); double-headed arrows indicate amplitude of oscillation. (b) Perspec—
tive view of finite-period (dashed) and infinite-period (homoclinic: solid)

oscillations, after averaging out the fast phase.
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